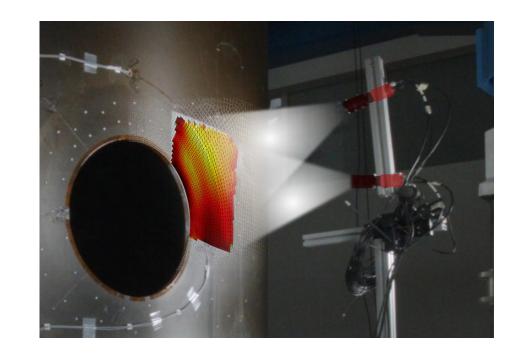
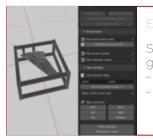


Credibility of simulation models: a brick-by-brick approach

Florent Mathieu




A word about EikoSim

- Mission: Bridges the gap between physical testing and numerical simulation in structural mechanics.
- Technology: Utilizes Digital Image Correlation (DIC) to align simulation models with real-world experimental data.
- Value: Reduces costly physical tests and optimizes designs through accurate simulations.
- Industries: Aerospace, defense, automotive, energy, civil engineering.

FIKOTWIN VIRTUAL

Synthetic image generation

- Planning
- Anticipating test difficulties

IKOTWIN VISION

Image acquisition


- Set up cameras
- Acquire images

FIKOTWIN DIC

Image processing

- Calibration
- DIC measurement
- Test/simulation comparison

EIKOTWIN DIGITAL TWII

Model calibration

- Boundary conditions

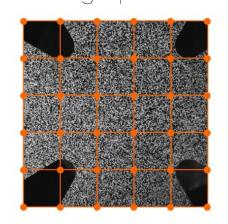
control

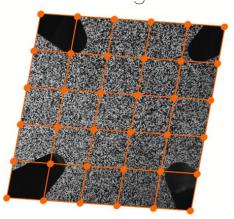
- Sensitivity study

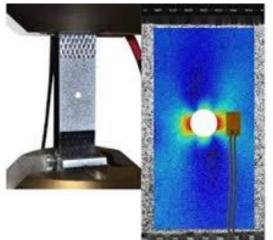
Parameter

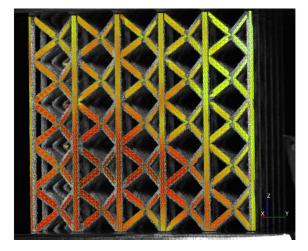
identification

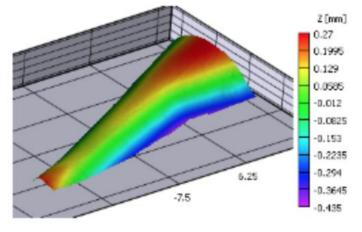
INTEGRATION PARTNERS

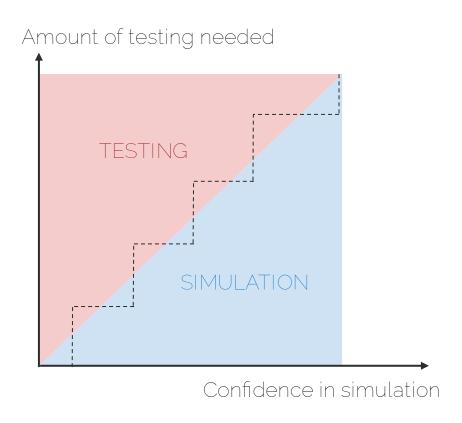



What is Digital Image Correlation?





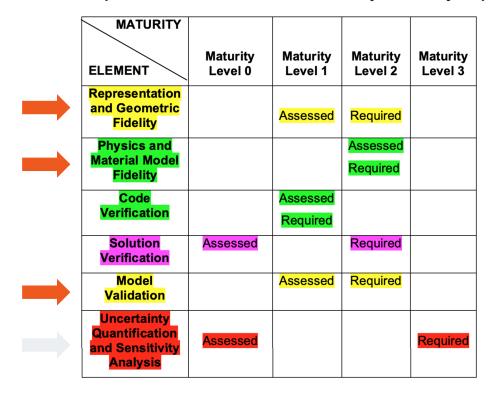

DIC is an optical measurement technique that measures displacement and strain fields by following a pattern in a series of images



Assessing model credibility to develop faster

New generations of products are being developed with less and less testing, but this is not a straightforward journey

- 1. What does it mean to have a credible model?
- 2. What are necessary tools/scales to build model credibility?



Building model credibility: using a scale to set common goals

- Predictive Capability Maturity Model for Computational Modeling and Simulation, William L. Oberkampf,
 Martin Pilch, and Timothy G. Trucano, 2007
- "The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts."

Table 4: Example of PCMM Table Assessment and Project Maturity Requirements

Estimating model maturity

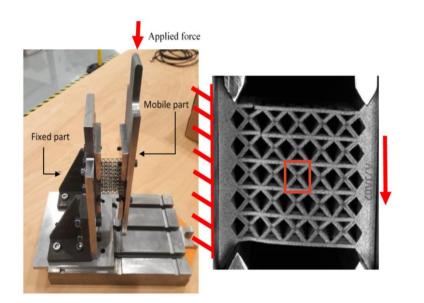
- makes evidence-based decision making easier when deciding on a testing policy
- allows to decide for necessary improvements in the modeling process

PCMM table

MATURITY	Maturity Level 0 Low Consequence, Minimal M&S Impact, e.g. Scoping Studies	Maturity Level 1 Moderate Consequence, Some M&S Impact, e.g. Design Support	Maturity Level 2 High-Consequence, High M&S Impact, e.g. Qualification Support	Maturity Level 3 High-Consequence, Decision-Making Based on M&S, e.g. Qualification or Certification
Representation and Geometric Fidelity What features are neglected because of simplifications or stylizations?	Judgment only Little or no representational or geometric fidelity for the system and BCs	Significant simplification or stylization of the system and BCs Geometry or representation of major components is defined	Limited simplification or stylization of major components and BCs Geometry or representation is well defined for major components and some minor components Some peer review conducted	Essentially no simplification or stylization of components in the system and BCs Geometry or representation of all components is at the detail of "as built", e.g., gaps, material interfaces, fasteners Independent peer review conducted
Physics and Material Model Fidelity How fundamental are the physics and material models and what is the level of model calibration?	Judgment only Model forms are either unknown or fully empirical Few, if any, physics-informed models No coupling of models	Some models are physics based and are calibrated using data from related systems Minimal or ad hoc coupling of models	Physics-based models for all important processes Significant calibration needed using separate effects tests (SETs) and integral effects tests (IETs) One-way coupling of models Some peer review conducted	All models are physics based Minimal need for calibration using SETs and IETs Sound physical basis for extrapolation and coupling of models Full, two-way coupling of models Independent peer review conducted
Code Verification Are algorithm deficiencies, software errors, and poor SQE practices corrupting the simulation results?	Judgment only Minimal testing of any software elements Little or no SQE procedures specified or followed	Code is managed by SQE procedures Unit and regression testing conducted Some comparisons made with benchmarks	Some algorithms are tested to determine the observed order of numerical convergence Some features & capabilities (F&C) are tested with benchmark solutions Some peer review conducted	All important algorithms are tested to determine the observed order of numerical convergence All important F&Cs are tested with rigorous benchmark solutions Independent peer review conducted
Solution Verification Are numerical solution errors and human procedural errors corrupting the simulation results?	Judgment only Numerical errors have an unknown or large effect on simulation results	Numerical effects on relevant SRQs are qualitatively estimated Input/output (I/O) verified only by the analysts	Numerical effects are quantitatively estimated to be small on some SRQs I/O independently verified Some peer review conducted	Numerical effects are determined to be small on all important SRQs Important simulations are independently reproduced Independent peer review conducted
Model Validation How carefully is the accuracy of the simulation and experimental results assessed at various tiers in a validation hierarchy?	Judgment only Few, if any, comparisons with measurements from similar systems or applications	Quantitative assessment of accuracy of SRQs not directly relevant to the application of interest Large or unknown exper- imental uncertainties	Quantitative assessment of predictive accuracy for some key SRQs from IETs and SETs Experimental uncertainties are well characterized for most SETs, but poorly known for IETs Some peer review conducted	Quantitative assessment of predictive accuracy for all important SRQs from IETs and SETs at conditions/geometries directly relevant to the application Experimental uncertainties are well characterized for all IETs and SETs Independent peer review conducted
Uncertainty Quantification and Sensitivity Analysis How thoroughly are uncertaintles and sensitivities characterized and propagated?	Judgment only Only deterministic analyses are conducted Uncertainties and sensitivities are not addressed	Aleatory and epistemic (A&E) uncertainties propagated, but without distinction Informal sensitivity studies conducted Many strong UQ/SA assumptions made	A&E uncertainties segregated, propagated and identified in SRQs Quantitative sensitivity analyses conducted for most parameters Numerical propagation errors are estimated and their effect known Some strong assumptions made Some peer review conducted	A&E uncertainties comprehensively treated and properly interpreted Comprehensive sensitivity analyses conducted for parameters and models Numerical propagation errors are demonstrated to be small No significant UQ/SA assumptions made

Predictive Capability Maturity Model for Computational Modeling and Simulation, William L. Oberkampf, Martin Pilch, and Timothy G. Trucano, 2007

MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
Representation and Geometric Fidelity				
Physics and Material Model Fidelity				
Code Verification				
Solution Verification				
Model Validation				
Uncertainty Quantification and Sensitivity Analysis				



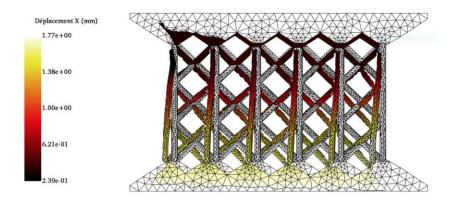
Context & objectives:

- Lattice structure
- Complex structural testing: impossible to use strain gauges
- Complex boundary conditions : make

MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
Representation and Geometric Fidelity	X			
Pnysics and Material Model Fidelity				
Code Verification				
Solution Verification				
Model Validation				
Uncertainty Quantification and Sensitivity Analysis				

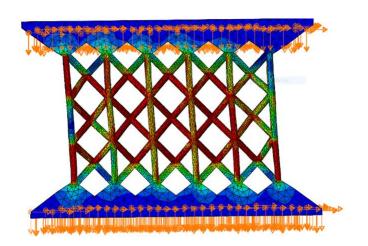
Representation and Geometric Fidelity What features are neglected because of simplifications or stylizations?

Maturity Level 0


Low Consequence, Minimal M&S Impact, e.g. Scoping Studies

- Judgment only
- Little or no representational or geometric fidelity for the system and BCs

8



Procedure

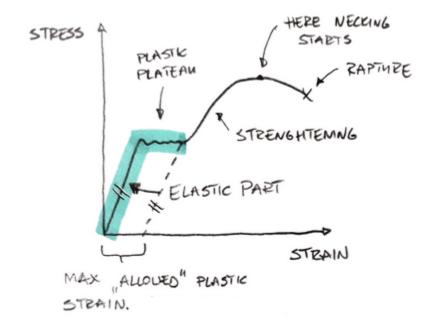
- Measurement on a complex FE mesh
- Boundary conditions management from the displacement field via a 6dof RBM

MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
Representation and Geometric Fidelity	x –		X	
Pnysics and Material Model Fidelity				
Code Verification				
Solution Verification				
Model Validation				
Uncertainty Quantification and Sensitivity Analysis				

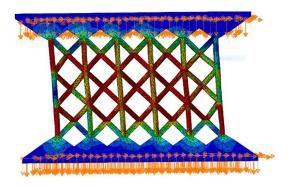
Representation and Geometric Fidelity

What features are neglected because of simplifications or stylizations?

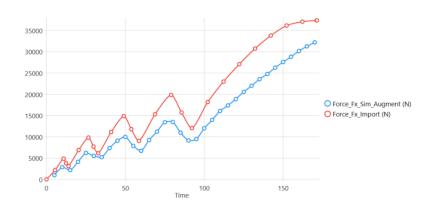
Maturity Level 2


High-Consequence, High M&S Impact, e.g. Qualification Support

- · Limited simplification or stylization of major components and BCs
- Geometry or representation is well defined for major components and some minor components
- Some peer review conducted



MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
Representation and Geometric Fidelity				
Physics and Material Model Fidelity				
Code Verification				
Solution Verification				
Model Validation				
Uncertainty Quantification and Sensitivity Analysis				



Context & objectives:

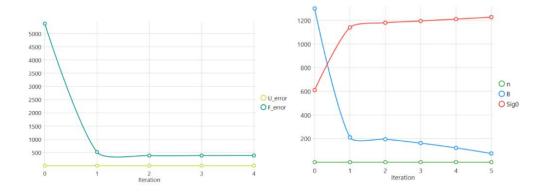
- Boundary conditions creation from the displacement field
- Homogenized parameters identification

MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
Representation and Geometric Fidelity				
Physics and Material Model Fidelity		X		
Code Verification				
Solution Verification				
Model Validation				
Uncertainty Quantification and Sensitivity Analysis				

Maturity Level 1

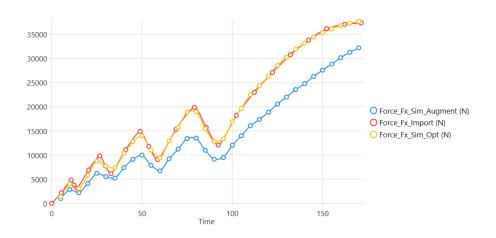
Moderate Consequence, Some M&S Impact, e.g. Design Support

Physics and Material Model Fidelity


How fundamental are the physics and material models and what is the level of model calibration?

- Some models are physics based and are calibrated using data from related systems
- Minimal or ad hoc coupling of models

11



Procedure

- Material model calibration on U+F thanks to inverse method (Finite Flement Model Updating)
- One-test identification of 3 parameters

	MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
	Representation and Geometric Fidelity				
$\left(ight.$	Physics and Material Model Fidelity		X -	-	X
	Code Verification				
	Solution Verification				
	Model Validation				
	Uncertainty Quantification and Sensitivity Analysis				

Maturity Level 3

High-Consequence, Decision-Making Based on M&S, e.g. Qualification or Certification

Model Fidelity

How fundamental are the physical Sound physical basis for extrapolation and material models and what is the level of model calibration?

All models are physics based

Physics and Material Minimal need for calibration using SETs and IETs

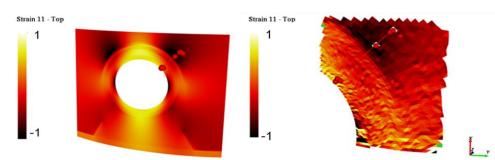
and coupling of models

- . Full, two-way coupling of models
- · Independent peer review conducted

Brick 5 – Model validation

	MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3
	Representation and Geometric Fidelity				
	Physics and Material Model Fidelity				
	Code Verification				
_	Solution Verification				
	Model Validation				
	Uncertainty				
	Quantification and Sensitivity Analysis				

Structural validation test with ArianeGroup



Context & objectives:

- Size 1 Dual Launch Structure
- Compression test
- Goal: validation of the simulation

Procedure:

- Instrumentation: Multi-camera DIC systems (6), strain gauges, fiber optics, photogrammetry
- Global test/simulation comparison
- Uncertainty quantification for all measurement sources

Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3	
	X –		→ X	
				IJ
		Level 0 Level 1	Level 0 Level 1 Level 2	Level 0 Level 1 Level 2 Level 3

Moderate Consequence,

Model Validation

How carefully is the accuracy of

the simulation and experimental

results assessed at various tiers in

a validation hierarchy?

Some M&S Impact, e.g. Design Support

Maturity Level 1

Quantitative assessment of accuracy of SRQs not directly relevant to the application of interest

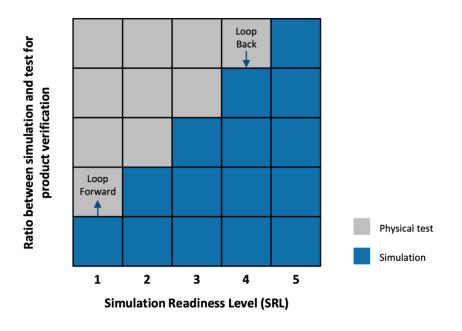
Large or unknown experimental uncertainties

Maturity Level 3

High-Consequence, Decision-Making Based on M&S, e.g. Qualification or Certification

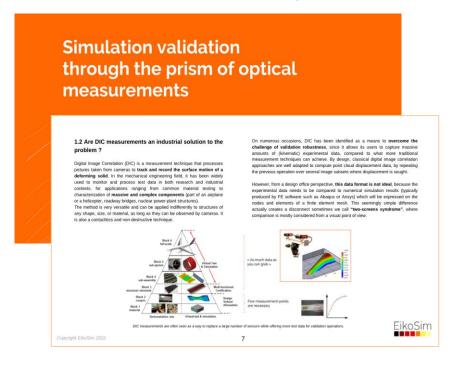
- Quantitative assessment of predictive accuracy for all important SRQs from IETs and SETs at conditions/geometries directly relevant to the application
- Experimental uncertainties are well characterized for all IETs and SETs
- · Independent peer review conducted

14


Conclusion

Main points

- Each category of the PCMM (or CAS, ...) scale helps rationalize maturity objectives,
- Combined efforts by simulation and test teams allow to reach higher levels of maturity for each category,
- In all examples, the customer didn't use the PCMM scale, we did internally. Adopting such a system can lead to clarify expectations and define a set of internal rules on how much testing should be conducted


Industrial Implementation of a Simulation Maturity Scale, Anders Bøge Jensen (Grundfos) NAFEMS seminar on V&V, 2021

Questions?

Download our White Paper!

FOLLOW US

www.eikosim.com